成人精品视频一区二区三区尤物-国产精品无码一区二区三区-激情综合色五月丁香六月欧美-久久久久久亚洲精品中文字幕-亚洲精品午夜国产va久久成人

陜西土木建筑網(wǎng)首頁 > 建筑論文 > 建筑施工 > 利用陜西地區(qū)原材料研制C90高強(qiáng)高性能混凝土

閱讀 15172 次 利用陜西地區(qū)原材料研制C90高強(qiáng)高性能混凝土

摘要:本文研究了利用陜西地區(qū)常規(guī)材料和通用的工藝研制C90高強(qiáng)高性能混凝土。通過嚴(yán)格的原材料篩選處理,合理的優(yōu)化配比,成功研制出具有優(yōu)良的拌和性能、適用于泵送施工,28天抗壓強(qiáng)度達(dá)到100.8MPa高強(qiáng)高性能混凝土;同時(shí)進(jìn)行了大量的耐久性試驗(yàn),結(jié)果證明所配制的混凝土具有良好耐久性。此外,還進(jìn)行了掃描電鏡、孔分析等微觀分析試驗(yàn),從微觀角度分析高強(qiáng)高性能混凝土中礦物摻合料水化、水泥石和集料間過渡層隨齡期發(fā)展、混凝土內(nèi)部干縮裂縫存在等問題。...
 
利用陜西地區(qū)原材料研制C90高強(qiáng)高性能混凝土
 
陳社生,黃沛增,潘榮國,王寶卿,黃興亮,斯方海
(陜西省建筑科學(xué)研究院,陜西  西安  710082)
Utilizing Materials in Shanxi to Prepare C90 High Strength and High Performance Concrete
Chen Shesheng,Huang Peizeng,Pan Rongguo Wang Baoqing,Huang Xingliang,Si Fanghai
(Shanxi Provincial Academy of Building Research, Xi’an Shanxi 710082, China )
1、引言
    隨著社會(huì)經(jīng)濟(jì)和生產(chǎn)力的高速發(fā)展,帶來物質(zhì)文明高度發(fā)達(dá),混凝土已逐漸成為人類社會(huì)、經(jīng)濟(jì)、文化、生活的基礎(chǔ)。混凝土是以水泥為主要膠凝材料的建筑材料,水泥生產(chǎn)歷來是一種污染源,在其制造過程中,原生資源耗量大,廢氣、粉塵排放量大,水泥的生產(chǎn)對(duì)環(huán)境的惡化已造成不可低估的影響。如何解決建設(shè)發(fā)展對(duì)混凝土的需求和環(huán)境保護(hù)需限制水泥生產(chǎn)的這對(duì)矛盾,需要我們進(jìn)行深入地思考。發(fā)展應(yīng)用綠色混凝土將是解決這矛盾一個(gè)途徑,而高強(qiáng)高性能混凝土又是綠色混凝土發(fā)展的主要方向。這是由于高強(qiáng)高性能混凝土能有效地減輕結(jié)構(gòu)自重,這樣就可大幅度減少水泥和混凝土用量,增加建筑使用面積和縮短施工工期,帶來了明顯的經(jīng)濟(jì)效益。高強(qiáng)高性能混凝土能大幅度地提高混凝土的耐久性,降低建筑物的維修費(fèi)用和增長使用壽命。同時(shí)應(yīng)用高強(qiáng)高性能混凝土還能使工程的材料用量及建筑成本將大量減少,生產(chǎn)、運(yùn)輸和施工能耗也將大量降低,減小對(duì)環(huán)境的破壞。
 
    研究高強(qiáng)高性能混凝土技術(shù)途徑就是要嚴(yán)格篩選控制原材料,盡量降低混凝土內(nèi)部的缺陷(如大孔、弱界面、弱體相等結(jié)構(gòu)缺陷);炷潦欠莿蛸|(zhì)材料,硬化的混凝土由集料、水泥漿體和界面過渡區(qū)三個(gè)重要環(huán)節(jié)組成。這三個(gè)節(jié)環(huán)環(huán)相扣,任何一個(gè)環(huán)節(jié)出現(xiàn)問題,則必然影響混凝土的總體性能。
2、原材料
    2.1水泥
    水泥是混凝土中最主要的膠凝材料,選擇優(yōu)質(zhì)的水泥對(duì)高強(qiáng)混凝土的配制非常重要。經(jīng)過初期的篩選試驗(yàn),優(yōu)選的冀東P.O52.5R水泥來配制C90高強(qiáng)高性能混凝土,冀東P.O52.5R水泥28d抗壓強(qiáng)度達(dá)到63.4MPa。
 
    2.2集料
    對(duì)集料總的要求是巖石強(qiáng)度盡量高、粒形和級(jí)配盡可能好,集料與水泥漿體最好能產(chǎn)生化學(xué)或物理嚙合。本試驗(yàn)采用陜西涇陽石灰石碎石,粒徑分別為0~5mm、5~20mm,該產(chǎn)地巖石抗壓強(qiáng)度在120~140MPa之間。細(xì)集料選用西安灞河的中砂,細(xì)度模數(shù)2.6,為Ⅱ 區(qū)砂。
 
    2.3減水劑
    主要解決配制高強(qiáng)混凝土要求低水膠比、低用水量與工作性之間的矛盾。本試驗(yàn)中選擇了SNF型萘系高效減水劑與XC型聚羧酸系高效減水劑,減水率均在25%以上,外加劑與水泥具有良好的適應(yīng)性,水泥漿體均無出現(xiàn)離析、泌水或閃凝現(xiàn)象。
 
    2.4膨脹劑
    加入混凝土中可改善混凝土內(nèi)部的應(yīng)力狀態(tài),提高混凝土的抗裂能力;另一方面水化生成的鈣礬石晶體能填充、堵塞混凝土的毛細(xì)孔,改善混凝土的孔結(jié)構(gòu)。本試驗(yàn)選用HCSA型膨脹劑。
 
    2.5礦物摻合料
    利用礦物摻合料的形態(tài)、微集料、火山灰活性三項(xiàng)效應(yīng),使混凝土強(qiáng)度、密實(shí)度和工作性得到改進(jìn),增加粒子密集堆積,減低孔隙率,改善孔結(jié)構(gòu),對(duì)抵抗侵蝕和延緩性能退化等都有較大作用。試驗(yàn)中選用三種礦物摻合料:寶雞二電廠Ⅰ級(jí)粉煤灰,S95型礦渣粉,?瞎杌。
 
    高強(qiáng)高性能混凝土是一種多組分復(fù)合材料,各組分性能的疊加甚至超疊加效應(yīng)表現(xiàn)得十分明顯。因此,選用兩種或兩種以上礦物摻合料和外加劑同時(shí)摻入混凝土,可以進(jìn)一步改進(jìn)混凝土性能,還可能取得某種特殊性能。
 
3、實(shí)驗(yàn)內(nèi)容
    3.1配合比設(shè)計(jì)
    在完成原材料篩選和性能檢驗(yàn)基礎(chǔ)上,從水膠比、水泥用量、減水劑選擇摻量、摻合料復(fù)摻比例、硅灰摻量等方面考慮,進(jìn)行了大量混凝土配制試驗(yàn)。配制混凝土?xí)r用水量根據(jù)混凝土拌合性能來確定,要達(dá)到泵送要求。表3.1選取部分代表性數(shù)據(jù)進(jìn)行說明。
表3.1 C90高強(qiáng)高性能混凝土配合比
編號(hào)
水膠比
水泥
粉煤灰
礦渣粉
硅灰
膨脹劑
聚羧酸/萘系*
K-3
0.24
136.7
385
646
1149
110
55
/
23.1
7.15
K-4
0.25
143.3
385
646
1149
110
55
/
23.1
17.2*
K-12
0.22
140
450
754
999
150
/
/
27
8.15
K-14
0.23
145.3
450
754
999
60
90
/
27
8.15
K-15
0.23
146.7
450
754
999
/
150
/
27
8.15
K-21
0.22
140
450
701
1052
90
60
/
27
6.27
K-23-1
0.21
140
480
700
/
1050
90
60
30
8.58
K-23-2
0.19
127.5
480
700
/
1050
90
60
30
25.74
K-25
0.21
142
480
700
1050
90
60
12.9
30
8.58
K-28
0.21
152
480
700
1050
90
60
54.8
30
8.58
    注:①“/”表示該摻量為零;②表中將膨脹劑歸入膠凝材料組分計(jì)算;③“*”代表摻的是萘系高效減水劑,同一列內(nèi)其余的都是摻聚羧酸高效減水劑。
 
    3.2混凝土耐久性
    混凝土結(jié)構(gòu)耐久性是基于材料耐久性的進(jìn)一步深化;炷两Y(jié)構(gòu)在自然環(huán)境和使用條件下,隨著時(shí)間的推移,材料逐漸老化和結(jié)構(gòu)性能不斷劣化,出現(xiàn)損傷甚至損壞,繼而影響建筑結(jié)構(gòu)的使用功能和承載力下降,最終影響整個(gè)結(jié)構(gòu)的安全。
 
    課題組在混凝土配制強(qiáng)度達(dá)到C90基礎(chǔ)上,進(jìn)行了大量耐久性試驗(yàn)研究(抗凍性、抗碳化性、抗?jié)B性、抗裂性等),以確定所研制混凝土的耐久性能情況。
 
4、試驗(yàn)結(jié)果與分析
    4.1混凝土拌合性能和強(qiáng)度
表4.1 C90高強(qiáng)高性能混凝土拌合性能和強(qiáng)度
編號(hào)
擴(kuò)展度/mm
坍落度/mm
R3/MPa
R7/MPa
R28/MPa
R56、R60*/MPa
K-3
240
640
55.4
76.2
80.4
/
K-4
265
570
52.3
68.1
76.6
/
K-12
260
660
61.6
77.4
87.1
/
K-14
260
610
66.0
81.7
89.3
/
K-15
250
620
71.6
79.5
86.5
/
K-21
245
600
70.9
77.0
89.5
91.7
K-23-1
260
650
71.9
81.2
92.6
99.5
K-23-2
265
670
68.2
81.1
86.9
95.0
K-25
255
630
71.5
88.1
100.8
109.3*
K-28
200
510
68.2
82.6
90.8
97.2*
    注:“*”代表60天齡期抗壓強(qiáng)度。
    由圖4.1可知,應(yīng)用通用的工藝配制C90強(qiáng)度等級(jí)混凝土,膠凝材料用量要達(dá)到一定量,特別是水泥的用量要適宜(水泥用量≥480kg/m3;《普通混凝土配合比設(shè)計(jì)規(guī)程》JGJ55-2002規(guī)定的高強(qiáng)混凝土的水泥用量不應(yīng)大于550 kg/m3)。
 
    由于粉煤灰與礦渣粉效應(yīng)互相疊加,從圖4.2可以看出,復(fù)摻摻合料的混凝土后期強(qiáng)度要明顯高于單摻,礦渣粉對(duì)混凝土早期強(qiáng)度發(fā)展作用優(yōu)于粉煤灰。通過試驗(yàn)得出粉煤灰與礦渣粉最佳摻量是60kg/m3、90kg/m3。
 
    編號(hào)K-4為萘系高效減水劑的最佳摻量,從圖4.3可看出,聚羧酸高效減水劑性能明顯萘系。聚羧酸高效減水劑摻量對(duì)混凝土性能作用顯著,摻量少達(dá)不到減水效果,無法降低水膠比;摻量過大混凝土出現(xiàn)趴底、泌水,對(duì)強(qiáng)度發(fā)展也不利;最終確定最佳摻量為1.3%(占膠凝材料)。
 
    硅灰的超微粉作用顯著,摻適量的硅灰能較大提高混凝土的抗壓強(qiáng)度。但由于硅灰的需水量大,當(dāng)硅灰摻量大于6%時(shí),混凝土的拌合性能明顯變差,強(qiáng)度相對(duì)于未摻硅灰的混凝土略有下降。
    4.2混凝土耐久性
    4.2.1抗凍性
    在標(biāo)準(zhǔn)養(yǎng)護(hù)28天后進(jìn)行1000次的凍融循環(huán),該混凝土經(jīng)1000次的凍融循環(huán)試驗(yàn),受檢混凝土的重量損失率為3.4%、相對(duì)動(dòng)彈性模量為91%,滿足《普通混凝土長期性能和耐久性能試驗(yàn)方法》(GBJ 82-85)規(guī)定,表明該混凝土抗凍性能優(yōu)異。
 
    4.2.2抗碳化性能
    試件在28齡期后進(jìn)行碳化試驗(yàn),碳化28天后將試件破型,在破型的新鮮面噴酚酞酒精溶液,破型面無明顯碳化,僅表層有少量變白。
 
    4.2.3抗?jié)B性能
    養(yǎng)28天后進(jìn)行抗?jié)B試驗(yàn),試驗(yàn)從水壓為0.1MPa開始,加壓到抗?jié)B儀的最大加壓值4.0MPa,觀察試件端面的均無出現(xiàn)滲水情況。
 
    4.2.4電通量
    電通量試驗(yàn)測(cè)試結(jié)果為924.75庫侖,說明該混凝土氯離子滲透性很低,即該混凝土具有良好的抗?jié)B性能。
 
    4.2.5抗裂性能
    混凝土抗裂形試驗(yàn)采用《鐵路混凝土工程施工質(zhì)量驗(yàn)收補(bǔ)充標(biāo)準(zhǔn)》中的附錄C圓環(huán)約束法和日本Y.Kasai提出的平板法試驗(yàn)法同時(shí)進(jìn)行試驗(yàn)。
 
    圓環(huán)約束法,圓環(huán)形試樣在成型兩天后有一條細(xì)微的裂縫出現(xiàn),經(jīng)過15天的連續(xù)觀測(cè),未有新的裂縫出現(xiàn),從圖4.5、圖4.6可以看出型15天后圓環(huán)形試樣裂縫寬度非常小,經(jīng)測(cè)量最寬處裂縫的寬度為0.10mm,裂縫深度為6.1mm。
 
    平板法試驗(yàn)方法,試件尺寸為600mm×600mm×50mm,與模具一起澆筑成一個(gè)整體,模具上的約束鋼筋位于平板試件的中面周邊,當(dāng)平板收縮時(shí)四周受到約束。按預(yù)定配合比拌合混凝土,澆注、振實(shí)、抹平試件后立即用塑料薄膜覆蓋, 2h后將塑料薄膜取下,放入風(fēng)速8m/s,溫度為30±3℃,濕度為60±5%風(fēng)道中進(jìn)行抗裂試驗(yàn)。24小時(shí)后結(jié)束試驗(yàn),試驗(yàn)紀(jì)錄:出現(xiàn)第一條裂縫時(shí)間、裂縫數(shù)目、裂縫面積。與C60混凝土比較說明。
表4.2混凝土平板抗裂法試驗(yàn)數(shù)據(jù)
試驗(yàn)環(huán)境
環(huán)境溫度為 26 ℃,相對(duì)濕度為 60 % ;風(fēng)速 8 m/s。
C60混凝土實(shí)測(cè)值
初裂時(shí)間,h
5.0
平均裂開面積,mm2/根
68.3
開裂裂縫數(shù)目,根/ m2
8.3
單位面積上的總裂開面積,mm2/m2
566.9
C90混凝土實(shí)測(cè)值
初裂時(shí)間,h
2.5
平均裂開面積,mm2/根
18.3
開裂裂縫數(shù)目,根/ m2
33.3
單位面積上的總裂開面積,mm2/m2
609.4
 
    從表4.2看出,C90混凝土試樣的抗裂性能相對(duì)于C60混凝土試樣要差些。這是由于C90混凝土試樣的水泥用量大,漿積比大,導(dǎo)致混凝土收縮也大,抗裂性能也就會(huì)下降。因此,對(duì)抗裂性能有要求,則需考慮添加適量纖維,通過纖維的增韌作用起到提高混凝土的抗裂性能。
 
5、微觀結(jié)構(gòu)分析
    為了進(jìn)一步分析混凝土的微觀結(jié)構(gòu)與其性能間的關(guān)系,進(jìn)行了混凝土的掃描電鏡、孔結(jié)構(gòu)分析試驗(yàn)。為了更好說明問題將C90混凝土與同條件下的C60混凝土進(jìn)行對(duì)比說明。
 
    5.1掃描電鏡
     在進(jìn)行掃描電鏡試驗(yàn)時(shí),發(fā)現(xiàn)C90混凝土內(nèi)部非常密實(shí),很少有氣泡或孔隙等一些缺陷,將其與同養(yǎng)護(hù)條件下的C60混凝土進(jìn)行對(duì)比。
 
    如圖5.1和5.2所示。從圖中可以看出C90混凝土的密實(shí)程度要好于C60混凝土,C90混凝土內(nèi)很難發(fā)現(xiàn)如氣泡、孔隙等缺陷,而C60混凝土有較多如圖5.2中的圓形氣泡,氣泡內(nèi)部長滿的是針狀鈣礬石。
 
    圖5.3 和5.4是水泥石中粉煤灰與礦渣粉水化后形態(tài),齡期為56天,圖中細(xì)白線圈的是礦渣粉。從圖5.3可看出,粉煤灰經(jīng)過56天的水化與膠凝體已很緊密的膠結(jié)在一起,在制樣時(shí)粉煤灰顆粒球體被分部剝離開。從礦渣粉表面看,礦渣粉的水化程度要好于粉煤灰,這也就是在同一條件下?lián)降V渣粉的混凝土早期強(qiáng)度要高于摻粉煤灰的混凝土的原因。
 
    另外,試驗(yàn)針對(duì)不同的齡期的混凝土的水泥石和集料間過渡層作了分析。如圖5.6、圖5.7、圖5.8的齡期分別是28天、56天、1年,從圖中可以看出,28天時(shí)水泥石和集料間過渡層又一條明顯的裂縫,這是混凝土集料吸附水形成的水化膜層,隨著齡期的增長,混凝土水化凝膠溶出逐漸填充水膜層。由圖中可以看出,到56天時(shí)裂縫就已經(jīng)變小了;再到了1年的齡期后,水泥石與集料完全結(jié)合在一起,基本看不到裂縫,集料的界面副作用也逐漸減弱。
 
    另外,從圖5.9種可以看出,水泥石水化凝膠體中出現(xiàn)些微裂縫。這是由于高強(qiáng)混凝土密實(shí)度很高,外界水分很難進(jìn)入混凝土內(nèi)部,混凝土在后期水化缺少水分而形成的干縮裂縫,從圖中可看出最寬處的寬度達(dá)到1000nm。
 
    5.2孔分析
    根據(jù)吳中偉教授對(duì)孔徑影響混凝土耐久性的4個(gè)分級(jí)(表5.1),這微裂縫屬于多害孔,這些裂縫將對(duì)混凝土的后期強(qiáng)度發(fā)展產(chǎn)生較大的影響。在同濟(jì)大學(xué)的孔分析結(jié)構(gòu),也證實(shí)了存在這問題,如圖5.10所示。
表5.1孔徑對(duì)耐久性的影響分級(jí)
級(jí)別
無害孔
少害孔
有害孔
多害孔
孔徑(nm)
<20
20~50
50~200
>200
    相同養(yǎng)護(hù)條件下,C60混凝土與C90混凝土的孔分布情況:
表5.2 C60混凝土與C90混凝土的總孔量和孔分布比較
試  樣
總孔量,cc/g
孔徑分布,cc/g
無害孔
少害孔
有害孔
多害孔
C60
0.2974
0.2054
00476
0.0329
0.0115
C90
0.3801
0.2690
0.0543
0.0311
0.0257
    根據(jù)表5.2繪制出圖5.10:
 
    由圖5.10可以看出,雖然C90混凝土的強(qiáng)度高,但其孔隙量卻要大于C60混凝土,特別是多害孔C90混凝土是C60混凝土的兩倍多,這與C90混凝土掃描電鏡觀測(cè)到的硬化干縮裂縫一致,其原因是C90混凝土試樣的水泥用量大,漿積比大,水膠比低,混凝土水化收縮也就大,后期水化水分不充足,導(dǎo)致混凝土產(chǎn)生應(yīng)力收縮出現(xiàn)裂縫。因此,如何防阻高強(qiáng)混凝土內(nèi)部干縮裂縫產(chǎn)生這問題,還有待于廣大科研工作者深入研究。
 
6、結(jié)論
    通過大量的試驗(yàn)研究,課題組利用陜西地區(qū)原材料,成功了配制出具有優(yōu)良的拌和性能、適用于泵送施工,并具有良好耐久性,抗壓強(qiáng)度等級(jí)達(dá)到C90的高強(qiáng)高性能混凝土?偨Y(jié)課題研究得出以下幾條結(jié)論:
    1)聚羧酸系高效減水劑配制混凝土性能明顯優(yōu)于萘系配制混凝土性能,并確定XC聚羧酸系高效減水劑的最佳摻量是1.3%;
    2)礦物摻合料復(fù)摻對(duì)混凝土性能改進(jìn)優(yōu)于單摻作用;
    3)超細(xì)礦物摻合料是配制強(qiáng)度等級(jí)C90及以上的高強(qiáng)混凝土必要選擇;
    4)本課題研究最終確定配制C90高強(qiáng)高性能混凝土的最佳配合比:
名稱
水膠比
水泥
粉煤灰
礦渣粉
硅灰
膨脹劑
聚羧酸
材料用量,kg/m3
0.21
142
480
700
1050
90
60
12.9
30
8.58
 
    5)高強(qiáng)混凝土膠凝材料用量較大,水膠比低,混凝土存在收縮開裂問題,有待于進(jìn)一步深入研究。
 
[1] 蒲心誠等. 100-150MPa超高強(qiáng)高性能混凝土的配制技術(shù)[J]混凝土與水泥制品1998N o.6
[2] 譚克鋒. 鋼管與超高強(qiáng)混凝土復(fù)合材料的力學(xué)性能及承載能力研究[D].重慶建筑大學(xué)博士學(xué)位論文.
[3]黃士元等. 近代混凝土技術(shù)—當(dāng)代土木建筑科技叢書[M]西安:陜西科學(xué)技術(shù)出版社,1998
[4] 張璐明等. 80-90MPa粉煤灰高性能混凝土研制及其性能[J]高強(qiáng)高性能混凝土1997.
[5] 王一光等. 裹砂石法配制C80-C90高性能混凝土試驗(yàn)[J]建筑技術(shù)1991.1
[7] 姚武. 高強(qiáng)混凝土的原材料選擇[J]中國港灣建設(shè) 2000.2第1期
[8] 龔建清,曹榮奎. 礦物微粉對(duì)水泥基混合料抗壓強(qiáng)度的影響[J]企業(yè)技術(shù)開發(fā)第2008年3月,27卷第3期
[9] 盧木. 混凝土耐久性研究現(xiàn)狀和研究方向.工業(yè)建筑.1997,27(5)
 
 
 
(本文來源:陜西省土木建筑學(xué)會(huì)  文徑網(wǎng)絡(luò):文徑 楊葉 編輯  劉真 審核)
 
主站蜘蛛池模板: 天津市| 喀喇沁旗| 德江县| 宣化县| 保靖县| 彰化市| 永济市| 拜城县| 旬阳县| 宾阳县| 奉贤区| 陕西省| 梁山县| 清苑县| 慈利县| 峨边| 石狮市| 兴安盟| 苍溪县| 崇仁县| 永靖县| 临高县| 通江县| 枞阳县| 信丰县| 佛学| 赤城县| 上杭县| 宜兴市| 太湖县| 如皋市| 信宜市| 陆川县| 类乌齐县| 马关县| 铜川市| 长宁县| 余江县| 邮箱| 龙门县| 张家口市|